Markov Chain Monte Carlo with People
نویسندگان
چکیده
Many formal models of cognition implicitly use subjective probability distributions to capture the assumptions of human learners. Most applications of these models determine these distributions indirectly. We propose a method for directly determining the assumptions of human learners by sampling from subjective probability distributions. Using a correspondence between a model of human choice and Markov chain Monte Carlo (MCMC), we describe a method for sampling from the distributions over objects that people associate with different categories. In our task, subjects choose whether to accept or reject a proposed change to an object. The task is constructed so that these decisions follow an MCMC acceptance rule, defining a Markov chain for which the stationary distribution is the category distribution. We test this procedure for both artificial categories acquired in the laboratory, and natural categories acquired from experience.
منابع مشابه
Identifying representations of categories of discrete items using Markov chain Monte Carlo with People
Identifying the structure of mental representations is a basic problem for cognitive science. We present a method for identifying people’s representations of categories that are defined over a set of discrete items, such as a collection of images. This method builds on previous work using Markov chain Monte Carlo algorithms as the basis for designing behavioral experiments, and we thus call it ...
متن کاملRunning head: COMPARING METHODS FOR IDENTIFYING CATEGORIES Testing the efficiency of Markov chain Monte Carlo with people using facial affect categories
Exploring how people represent natural categories is a key step towards developing a better understanding of how people learn, form memories, and make decisions. Much research on categorization has focused on artificial categories that are created in the laboratory, since studying natural categories defined on high-dimensional stimuli such as images is methodologically challenging. Recent work ...
متن کاملMarkov chain Monte Carlo methods for visual tracking
Tracking articulated figures in high dimensional state spaces require tractable methods for inferring posterior distributions of joint locations, angles, and occlusion parameters. Markov chain Monte Carlo (MCMC) methods are efficient sampling procedures for approximating probability distributions. We apply MCMC to the domain of people tracking and investigate a general framework for sample-appr...
متن کاملA Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind
In the present work, a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind. The solution of the integral equation is described by the Neumann series expansion. Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method. An algorithm is proposed to sim...
متن کاملMarkov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference
In this age of modern era, the use of internet must be maximized. Yeah, internet will help us very much not only for important thing but also for daily activities. Many people now, from any level can use internet. The sources of internet connection can also be enjoyed in many places. As one of the benefits is to get the on-line markov chain monte carlo stochastic simulation for bayesian inferen...
متن کامل